Cloning and characterization of a basic helix-loop-helix protein expressed in early mesoderm and the developing somites.

نویسندگان

  • E E Quertermous
  • H Hidai
  • M A Blanar
  • T Quertermous
چکیده

Basic helix-loop-helix (bHLH) heterodimer protein complexes regulate transcription of genes during the processes of differentiation and development. To study the molecular basis of early mesodermal differentiation, we sought to identify bHLH proteins from cells of mesodermal origin. By using an interaction cloning strategy with a radiolabled recombinant bHLH protein, E12, a clone encoding a potential heterodimer partner was isolated from an endothelial cell library. This gene (bHLH-EC2) is most homologous to Twist but shares similarity within the bHLH domain with TAL1 and other members of this family. bHLH-EC2 is expressed in cultured endothelial cells and in embryonic stem cell, erythroleukemia, and muscle cell lines in a differentiation-dependent manner. In situ hybridization studies of mouse embryos reveal that bHLH-EC2 is expressed throughout the primitive mesoderm as early as 7.5 days postcoitum. Expression then becomes restricted to the paraxial mesoderm and to the dermamyotome of the developing somite. Expression of bHLH-EC2 in cells destined to become myoblasts thus predates expression of myogenic bHLH factors. bHLH-EC2 is expressed in early endothelial and hematopoietic cells in vivo, as shown by RNA studies of embryonic yolk sac and cultured cells derived from yolk sac explants. These findings suggest that bHLH-EC2 plays a role in the development of multiple cell types derived from the primitive mesoderm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meso1, a basic-helix-loop-helix protein involved in mammalian presomitic mesoderm development.

To identify genes involved in the regulation of early mammalian development, we have developed a dominant-negative mutant basic-helix-loop-helix (bHLH) protein probe for interaction cloning and have isolated a member of the bHLH family of transcription factors, Meso1. Meso1-E2A heterodimers are capable of binding to oligonucleotide probes that contain a bHLH DNA recognition motif. In mouse embr...

متن کامل

Expression of the novel basic-helix-loop-helix transcription factor cMespo in presomitic mesoderm of chicken embryos

We have identified a novel chicken gene, cMespo, which encodes a basic-helix-loop-helix (bHLH) protein with sequence homology to a subgroup of bHLH transcription factors that have been implicated in somitogenesis. cMespo transcripts are first found in the primitive streak of gastrulating chick embryos (HH stage 4) and continue to accumulate in presomitic mesoderm (PSM) until somite formation ha...

متن کامل

Sequence and expression of zebrafish foxc1a and foxc1b, encoding conserved forkhead/winged helix transcription factors

Mouse Foxc1 (previously Mf1) is a member of the conserved forkhead/winged helix transcription factor gene family. It is expressed in many mesodermal tissues including paraxial mesoderm of the trunk and head, prechondrogenic mesenchyme, branchial arches and developing kidney. Homozygous mutants die perinatally with hydrocephalus and skeletal, cardiovascular, ocular and genitourinary defects. Her...

متن کامل

Dual role of the basic helix-loop-helix transcription factor scleraxis in mesoderm formation and chondrogenesis during mouse embryogenesis.

Scleraxis is a basic helix-loop-helix (bHLH) transcription factor shown previously to be expressed in developing chondrogenic cell lineages during embryogenesis. To investigate its function in embryonic development, we produced scleraxis-null mice by gene targeting. Homozygous mutant embryos developed normally until the early egg cylinder stage (embryonic day 6.0), when they became growth-arres...

متن کامل

A MODEL FOR THE BASIC HELIX- LOOPHELIX MOTIF AND ITS SEQUENCE SPECIFIC RECOGNITION OF DNA

A three dimensional model of the basic Helix-Loop-Helix motif and its sequence specific recognition of DNA is described. The basic-helix I is modeled as a continuous ?-helix because no ?-helix breaking residue is found between the basic region and the first helix. When the basic region of the two peptide monomers are aligned in the successive major groove of the cognate DNA, the hydrophobi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 91 15  شماره 

صفحات  -

تاریخ انتشار 1994